热门搜索:
起订量:3 价格:2568
起订量:10 价格:2100
实验室方形固相萃取仪 真空固相萃取装置 CYCQ-24B 圆形固相萃取仪
目前用于试样预处理的方法很多,如液液萃取,气液萃取,膜萃取,固相萃取等,但都是各有长处及存在yi定缺点,只能适用于yi定的范围。1990年Pawliszyn[1]等提出了新的固相萃取技术--固相微萃取(solid-phase-microextraction,SPME)。它是一种基于气固吸附(吸收)和液固吸附(吸收)平衡的富集方法,利用分析物活性固体表面(熔融石英纤维表面的涂层)有yi定的吸附(吸收)亲合力而达到被分离富集的目的。自1994年SPME装置商品化以来,该技术取得了较快的发展,除了主要与气相色谱(GC)联用外,还可与液相色谱(HPLC)、毛细管电泳(CE)以及紫外分光光度(UV)等多种分离分析技术联用。SPME已开始用于分析水、土壤、空气等环境样品,以及血、尿等生物样品和食品、物等各个方面。本文将对它特点和萃取方法的建立,以及与GC、HPLC技术的联用,以及在水质分析中的应用作一简要介绍。
二、固相微萃取(SPME)特点
SPME装置是在一支长约1cm的熔融石英纤维上涂敷一层厚度为30~100μm高聚物固定相,如聚丙烯酸酯。纤维与形如器装置的不锈钢柱塞相连,收缩在不锈钢针头当中。从针头中抵出纤维并与试样溶液或顶空接触,使分析物被吸附而分配到涂敷层内。富集在针头上的分析物,在气相色谱仪进样口通过热解吸到色谱柱中。在HPLC的情况下,籍助SPME-HPLC的接口将吸附在纤维上的分析物传送至分析柱。SPME的特点是集取样、萃取、富集、进样于一体,一般的试样预处理方法只能完成其中的一、二步,而SPME根据自身的特点,集多步为一体,简化了试样预处理过程。SPME易于操作,是试样和涂层直接作用,几乎不消耗溶剂,降低了成本,保护了色谱柱,SPME的速度取决于分析物分配平衡所需的时间,一般在2~30分钟内即可达到平衡。该技术适用于微量或痕量组分的富集。
三、联用技术
1.SPME-GC
SPME装置可在气相色谱仪的进样口直接进样,不存在接口问题,因此SPME-GC是Z早发展、较为完善、广泛应用的联用技术,现在还在不断的改进中。在与GC联用情况下,SPME装置直接插入色谱仪进样口,被吸附在石英纤维固定相上的分析物在汽化室200~300℃下热脱附。然而对于一些分子量很大的化合物,如芘,热脱附很困难。Conte[2]等提出了一种用金属丝代替石英纤维的装置,用在金属丝两端通电的方法,解决了这一问题。
2.SPME-HPLC
随着SPME技术的发展,SPME-HPLC联用成为发展的方向之一。与SPME-GC的情况不同,和HPLC联用时,需要一个接口,实现分析物的解吸。Chen[3]等提出了一种SPME-HPLC接口,接口为T形三通,其中两口代替定量管(loop)与六通阀相连。*三口为SPME纤维入口。在进样位置,流动相与六通阀连接的一口进入洗脱腔,洗脱纤维上富集的分析物,由另一口流出进入分析柱。在装样位置,SPME纤维入口则无压力存在,柱塞可插进拔出,为下一次进样准备。他们分别用恒组分和梯度洗脱分离了水中的多环芳烃。
为了SPME自动化,1997年Eisert和Pawliszyn[4]提出了一种自动进样的SPME-HPLC联用装置--管内SPME-HPLC。位于HPLC自动进样阀和取样针之间的是一根涂有SPME固定相层的GC石英毛细管。当处于进样位置时,经针头吸入样品溶液,使分析物分配到石英管壁的固定相上。切换到装样位置时,吸入溶剂,将被吸附的组分转移到样品管中。在切换到进样位置,样品管内的溶液随流动相进入分析柱,进行色谱分析。这个装置的特点是自动进样,避免了手工操作。虽然洗脱富集的组分时引入了溶剂,但由于解脱和进样分开,避免了峰扩宽。此装置成功地分析了水样中6个苯。
Daimon[5]等还提出一种改进的SPME-HPLC接口。在解脱时,用电加热石英纤维的导管,增加解脱率。
商品化的SPME-HPLC接口,与Chen[3]等的设计基本相似。所有与SPME纤维或流动相接触的表面都是不锈钢或高聚物材料制成。六通阀处于装样位置时,SPME纤维在常压下导入解脱室,纤维由一个双锥形垫圈密封定位,再用一个夹子锁定。富集在纤维上的分析物可随流动相的通过被解吸(动态解脱)或在选定的溶剂中浸泡yi定的时间再进入色谱柱(静态解吸)。
7. 固相萃取参数的优化
在建立了初步的固相萃取方法后就可以用空白样品添加目标化合物后对添加物进行萃取。然后,根据分析结果对初步的固相萃取方法进行优化,以达到Z佳的效果。优化过程主要考虑的因素有:
回收率是否达到检测要求?
能否将萃取过程缩短以提率?
能否将溶剂使用量减少以节省成本、提率、减少污染?
如果检测结果发现回收率较低,应该先检查整个操作过程是否有错。如果没有,就要从方法本身查找原因了。可以从以下几个方面着手检查:
1. 洗涤溶剂是否合适
- 理想的洗涤溶剂是溶于基质,但对目标物溶解度低。
2.目标化合物是否没有洗脱
- 选择更强的洗脱溶剂(如改变pH、离子强度、**溶剂%含量)
- 选择作用力相对较弱的SPE柱
3.目标化合物是否没有被吸附
可以采用原萃取方法以双柱叠加的方式将两个性质相同的固相萃取柱串连在一起进行柱子预处理及样品添加操作,然后将两根柱子分开,分别对两根萃取柱洗脱。如果在下方的柱子上发现有目标化合物就表明目标化合物在萃取过程发生了穿透。也就是说目标化合物在样品添加过秤中没有按照方法设计要求不很好地吸附。有部分目标化合物在样品添加过程中随样品基质穿过固相萃取柱。发生穿透的原因可能是:萃取机理选择的不合适;固相萃取柱的吸附容量不够。目标化合物没有被吸附还有另外一种可能性就是对于某些样品来说,由于部分目标化合物没有呈游离状态。如生物样品中的目标化合物与蛋白质结合在一起,所以随着样品基质通过固相萃取柱。
4、目标化合物与固相萃取填料功能团之间的吸附作用过强
洗脱溶剂的洗脱强度不足以将目标化合物全部洗脱下来。这种情况可以改用吸附力较弱的固相萃取柱或改用洗脱强度更大地溶剂进行洗脱。
在达到预期回收率的前提下,我们希望萃取过程越短越好。提率可以从以下几个方面入手:
1、提高流速。包括预处理溶液流速、样品过柱流速。
2、减少洗脱溶液的体积
放射性同位素法优化固相萃取参数
在有条件的实验室,可以通过放射性标记物来查找回收率偏低的原因,优化固相萃取参数。通过同位素示踪的方法可以快速查出回收率偏低的原因,从而优化固相萃取参数。
统计学方法优化固相萃取参数
应用统计学方法或相关的软件(如:Design of Experiment, DOE)可以减少实验次数,加快固相萃取方法的建立与参数的优化。